A PPARgamma agonist inhibits aldosterone-induced mesangial cell proliferation by blocking ROS-dependent EGFR intracellular signaling.
نویسندگان
چکیده
Mesangial cell (MC) proliferation is a key feature in the pathogenesis of a number of renal diseases. Peroxisome proliferator-activated receptor-γ (PPARγ) has attracted considerable attention for its effects on stimulating cell differentiation and on inducing cell cycle arrest. We previously showed that aldosterone (Aldo) stimulates MC proliferation via the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway, which was dependent on reactive oxygen species (ROS)-mediated epithelial growth factor receptor (EGFR) transactivation (Huang S, Zhang A, Ding G, and Chen R. Am J Physiol Renal Physiol 296: F1323-F1333, 2009). In this study, we examined whether the PPARγ agonist rosiglitazone inhibited Aldo-induced MC proliferation by modulating ROS-dependent EGFR intracellular signaling. Rosiglitazone at 1-10 μM dose dependently inhibited Aldo-induced MC proliferation of cultured mouse MCs. The inhibitory effect was blocked by the PPARγ antagonist PD-68235, indicating that the rosiglitazone effect acted through PPARγ activation. Rosiglitazone also arrested Aldo-induced cell cycle progression and suppressed expression of cyclins D1 and A. Moreover, rosiglitazone dose dependently blocked Aldo-induced ROS production, EGFR phosphorylation, and PI3K/Akt activation. These results suggest that the PPARγ agonist rosiglitazone may inhibit Aldo-induced MC proliferation directly, by affecting ROS/EGFR/PI3K/Akt signaling pathways and cell cycle-regulatory proteins. PPARγ might be a novel therapeutic target against glomerular diseases.
منابع مشابه
Aldosterone-induced mesangial cell proliferation is mediated by EGF receptor transactivation.
Aldosterone (Aldo) stimulates glomerular mesangial cell (MC) proliferation, in part, through an ERK1/2-dependent pathway. In this study, we examined whether Aldo activation of ERK1/2 in MC is mediated through redox-dependent EGF receptor (EGFR) transactivation, as well as the involvement of other signaling mechanisms in Aldo-induced MC proliferation. Aldo increased human MC proliferation, as de...
متن کاملThe protective effect of propofol on hydrogen peroxide-induced human esophageal carcinoma via blocking the Wnt/β-catenin signaling pathway
Objective(s): To analyze the potential influences of propofol on the oxidative stress of H2O2-induced human esophageal squamous cell carcinoma (ESCC) Eca109 cell through mediating the Wnt/β-catenin signaling pathway.Materials and Methods: Eca109 cells were classified into 5 groups: Control group, H2O2 group, Propofol + H2O2 group, Dkk1 (Dickkopf-1, Wnt/β-catenin pathway antagonist) + H2O2 group...
متن کاملUrine acidification has no effect on peroxisome proliferator-activated receptor (PPAR) signaling or epidermal growth factor (EGF) expression in rat urinary bladder urothelium.
We previously reported prevention of urolithiasis and associated rat urinary bladder tumors by urine acidification (via diet acidification) in male rats treated with the dual peroxisome proliferator-activated receptor (PPAR)alpha/gamma agonist muraglitazar. Because urine acidification could potentially alter PPAR signaling and/or cellular proliferation in urothelium, we evaluated urothelial cel...
متن کاملUrsolic Acid Attenuates High Glucose-Mediated Mesangial Cell Injury by Inhibiting the Phosphatidylinositol 3-Kinase/Akt/Mammalian Target of Rapamycin (PI3K/Akt/mTOR) Signaling Pathway
BACKGROUND To investigate the protective effect of ursolic acid (UA) on high glucose (HG)-induced human glomerular mesangial cell injury and to determine whether UA inhibits cell proliferation and reactive oxygen species (ROS) production by suppressing PI3K/Akt/mTOR pathway activation. MATERIAL AND METHODS Human mesangial cells were cultured with normal glucose (NG group), high glucose (HG grou...
متن کاملAntagonistic effects of bone morphogenetic protein-4 and -7 on renal mesangial cell proliferation induced by aldosterone through MAPK activation.
Aldosterone and angiotensin II (ANG II) contribute to the development and progression of renal damage. Here we investigated the effects of bone morphogenetic proteins (BMPs) on renal cell proliferation evoked by aldosterone and ANG II with mouse mesangial cells, which express mineralocorticoid receptors (MR), ANG II type 1 receptors, and BMP signaling molecules. Aldosterone and ANG II stimulate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 300 2 شماره
صفحات -
تاریخ انتشار 2011